DNA Transcription - Translation Activity

Critical Thinking Exercise

Organisms are made up of proteins that are, in turn, made up of amino acids. The amino acids needed for protein synthesis by each organism is encoded in their DNA. Using the processes of *transcription* and *translation*, you can, theoretically start with a strand of DNA and calculate the amino acid chains for which an organism is coded.

In this activity, students will be given three strands of DNA. Using the different resources provided, they will determine the amino acids for which the DNA is coding and the organisms that would result from their protein synthesis.

Resources Needed:

- 1. Transcription to Protein Synthesis sheet
- 2. Genetic Code chart
- 3. Amino Acid Building Blocks of Organisms chart

Procedure:

- 1. Examine the three strands of DNA provided.
- 2. **Transcription**: On the worksheet, make the DNA strand into mRNA codons by writing the complimentary bases (review *Transcription to Protein Synthesis sheet*).
- 3. **Translation**: On the worksheet, using the **Genetic Code chart**, fill in the amino acids for each DNA strand.
- 4. **Organisms:** Using the to **Amino Acid Building Blocks of Organisms** chart, find which three organisms you have decoded.
- 5. In the last step, can you speculate what these three organisms represent?

Important Tip: Students <u>should not</u> use the tRNA anticodon when using the chart. It is the mRNA codon that carries the codon for a specific amino acid. The tRNA "anticodon" is the complement of the mRNA codon and it's job is to make sure to find the correct amino acid coded by mRNA to form the growing protein chain.

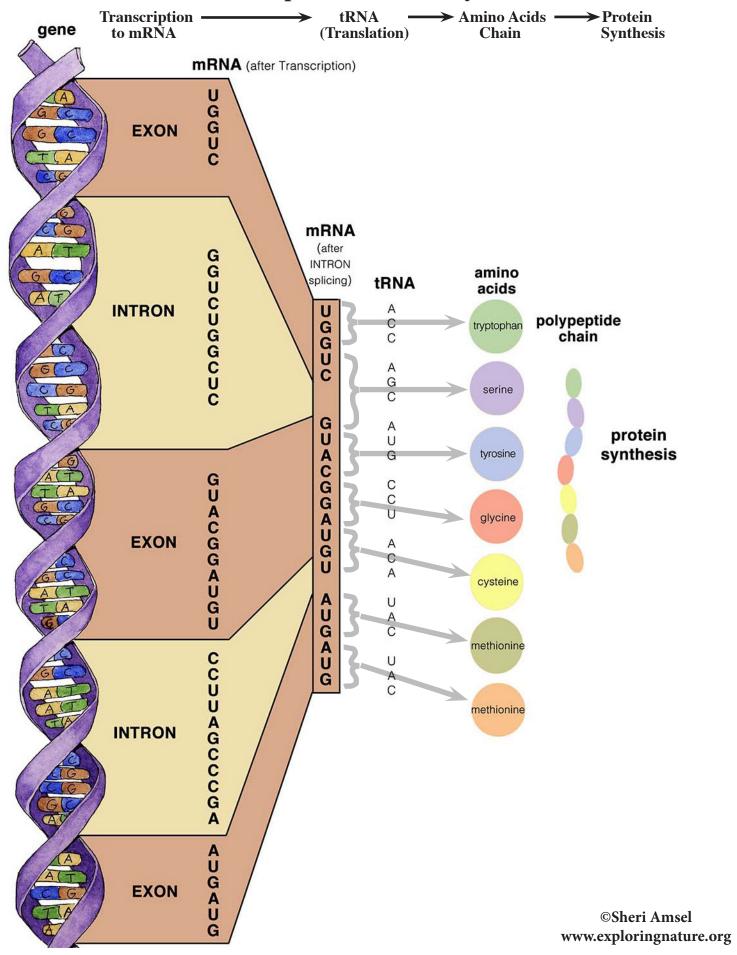
Next Generation Science Standards:

Disciplinary Core Ideas

LS1.A: Structure and Functions

• All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins.

Performance Expectations - Students who demonstrate understanding can:


HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.

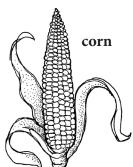
©Sheri Amsel www.exploringnature.org

DNA Transcription - Translation Worksheet

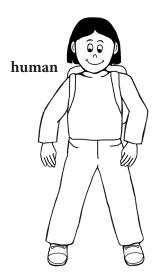
DNA:	mRNA (Transcripion):	tRNA	Amino Acids:
Organism 1:			
AAA			
UCG			
ATG			
TGG			
Organism 2:			
CAC			
AAA			
ACA			
ATG			
ATA			
TTA			
GTA			
TTC			
TCC			
Organism 3:			
ATA			
TTA			
AAA			
ATG			
TTC			
ACA			
TCC			
GTA			

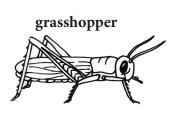
Transcription to Protein Synthesis

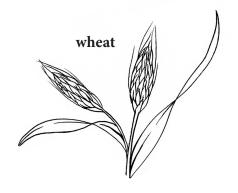
The Genetic Code - What Exactly is it?

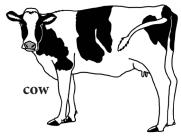

Every strand of DNA has a chain of *base pairs*. The base pairs make up a code. This code names different *amino acids* for building proteins. Three bases together are called a *codon* and each codon spells out one amino acid. There are 64 possible codon combinations, but only 20 amino acids. The code has many overlaps. Many amino acids together build a specific *protein*. This is called β This is the **genetic code**.

The Genetic Code		
Amino Acids	RNA Codons	
alanine	GCU GCC GCA GCG	
arginine	CGU CGC CGA CGG AGA AGG	
asparagine	AAU AAC	
aspartic acid	GAU GAC	
cysteine	UGU UGC	
glutamic acid	GAA GAG	
glutamine	CAA CAG	
glycine	GGU GGC GGA GGG	
histidine	CAU CAC	
isoleucine	AUU AUC AUA	
leucine	UUA UUG CUU CUC CUA CUG	
lysine	AAA AAG	
methionine	AUG	
phenylalanine	UUU UUC	
proline	CCU CCC CCA CCG	
serine	UCU UCC UCA UCG AGU AGC	
threonine	ACU ACC ACA ACG	
tryptophan	UGG	
tyrosine	UAU UAC	
valine	GUU GUC GUA GUG	
stop codons	UAA UAG UGA	


Amino Acid Building Blocks of Organisms

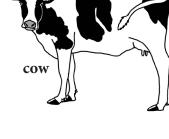

phenylalanine serine threonine tyrosine


histidine isoleucine leucine lvcine methionine phenylalanine threonine tryptophan valine


asparagine tyrosine lysine histidine phenylalanine threonine cysteine tyrosine

alanine arginine aspartic acid cysteine glutamic acid glycine histidine isoleucine leucine lysine methionine phenylalanine proline serine threonine tyrosine valine

alanine cysteine glutamic acid glycine histidine isoleucine lysine phenylalanine proline threonine valine



histidine cysteine tyrosine lysine asparagine phenylalanine threonine tryptophan valine

alanine

arginine

aspartic acid

cysteine glutamic acid glycine histidine isoleucine leucine lysine methionine phenylalanine proline serine threonine

tryptophan

tyrosine

valine

©Sheri Amsel www.exploringnature.org